Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.29.502029

ABSTRACT

Continued evolution of the SARS-CoV-2 spike poses a challenge to immune interventions. To develop antibodies that protect against evolving SARS-CoV-2 viruses, we combined antibodies that recognize different RBD sites to generate a trivalent antibody that potently neutralized all major variants, including the most recent Omicron lineages. Negative stain electron microscopy suggests that this multispecific achieves synergistic neutralization by engaging different epitopes in specific orientations that facilitate inter-spike binding. These interactions resulted in not only improved potency but also importantly prevented virus escape, a feature not seen with parental antibody cocktails or the most potent clinical mAb. Such multispecific antibodies simplify treatment, maximize coverage, decrease the likelihood of SARS-CoV-2 escape, and provide the basis for building universal SARS-CoV-2 antibody therapies that are more likely to maintain broad reactivity for future variants.

2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1594631.v1

ABSTRACT

Waning immunity after two SARS-CoV-2 mRNA vaccinations and the emergence of variants precipitated the need for booster doses. We evaluated safety and serological and cellular immunogenicity through 6 months after a third mRNA vaccination in adults who received the mRNA-1273 primary series in the Phase 1 trial approximately 9 to 10 months earlier. The booster vaccine formulations included 100 mcg of mRNA-1273, 50 mcg of mRNA-1273.351 that encodes Beta variant spike protein, and bivalent vaccine of 25 mcg each of mRNA-1273 and mRNA-1273.351. A third dose of mRNA vaccine appeared safe with acceptable reactogenicity. Vaccination induced rapid increases in binding and neutralizing antibody titers to D614G, Beta, Delta and Omicron variants that persisted through 6 months post-boost, particularly after administration of Beta-containing vaccines. Spike-specific CD4 + and CD8 + T cells increased to levels similar to those following the second dose. Boost vaccination induced broad and durable humoral and T cell responses. ClinicalTrials.gov numbers NCT04283461 (mRNA-1273 Phase 1) and NCT04785144 (mRNA-1273.351 Phase 1)

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.11.487879

ABSTRACT

The potential for future coronavirus outbreaks highlights the need to develop strategies and tools to broadly target this group of pathogens. Here, using an epitope-agnostic approach, we identified six monoclonal antibodies that bound to spike proteins from all seven human-infecting coronaviruses. Epitope mapping revealed that all six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. Two antibodies, COV44-62 and COV44-79, broadly neutralize a range of alpha and beta coronaviruses, including SARS-CoV-2 Omicron subvariants BA.1 and BA.2, albeit with lower potency than RBD-specific antibodies. In crystal structures of Fabs COV44-62 and COV44-79 with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine at the S2' cleavage site. Importantly, COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings identify the fusion peptide as the target of the broadest neutralizing antibodies in an epitope-agnostic screen, highlighting this site as a candidate for next-generation coronavirus vaccine development.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.28.486152

ABSTRACT

While humoral immune responses to infection or vaccination with ancestral SARS-CoV-2 have been well-characterized, responses elicited by infection with variants are less understood. Here we characterized the repertoire, epitope specificity, and cross-reactivity of antibodies elicited by Beta and Gamma variant infection compared to ancestral virus. We developed a high-throughput approach to obtain single-cell immunoglobulin sequences and isolate monoclonal antibodies for functional assessment. Spike-, RBD- and NTD-specific antibodies elicited by Beta- or Gamma-infection exhibited a remarkably similar hierarchy of epitope immunodominance for RBD and convergent V gene usage when compared to ancestral virus infection. Additionally, similar public B cell clones were elicited regardless of infecting variant. These convergent responses may account for the broad cross-reactivity and continued efficacy of vaccines based on a single ancestral variant.


Subject(s)
Tumor Virus Infections
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.03.479037

ABSTRACT

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to antibody neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-specific vaccines would enhance immunity and protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing antibody titers against D614G were 4760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (pre-boost), respectively, and 320 and 110 for Omicron. Two weeks after boost, titers against D614G and Omicron increased to 5360 and 2980, respectively, for mRNA-1273 and 2670 and 1930 for mRNA-Omicron. Following either boost, 70-80% of spike-specific B cells were cross-reactive against both WA1 and Omicron. Significant and equivalent control of virus replication in lower airways was observed following either boost. Therefore, an Omicron boost may not provide greater immunity or protection compared to a boost with the current mRNA-1273 vaccine.

6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.477770

ABSTRACT

Immunization with SARS-CoV-2 spike elicits diverse antibodies, but can any of these neutralize broadly? Here, we report the isolation and characterization of antibody WS6, from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, MERS-CoV, and hCoV-OC43. The crystal structure at 2-angstrom resolution of WS6 with its S2 epitope revealed recognition to center on a conserved helix, which was occluded in both prefusion and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion, post-viral attachment. Comparison of WS6 to other antibodies recently identified from convalescent donors or mice immunized with diverse spikes indicated a stem-helical supersite - centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156 - to be a promising target for vaccine design.


Subject(s)
Severe Acute Respiratory Syndrome
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.29.474491

ABSTRACT

Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.


Subject(s)
COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.27.474307

ABSTRACT

With B.1.1.529 SARS-CoV-2 variant's rapid spread and substantially increased resistance to neutralization by vaccinee and convalescent sera, monoclonal antibodies with potent neutralization are eagerly sought. To provide insight into effective neutralization, we determined cryo-EM structures and evaluated potent receptor-binding domain (RBD) antibodies for their ability to bind and neutralize this new variant. B.1.1.529 RBD mutations altered 16% of the RBD surface, clustering on a ridge of this domain proximal to the ACE2-binding surface and reducing binding of most antibodies. Significant inhibitory activity was retained, however, by select monoclonal antibodies including A19-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309 and LY-CoV1404, which accommodated these changes and neutralized B.1.1.529 with IC50s between 5.1-281 ng/ml, and we identified combinations of antibodies with potent synergistic neutralization. Structure-function analyses delineated the impact of resistance mutations and revealed structural mechanisms for maintenance of potent neutralization against emerging variants.

9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.15.21267805

ABSTRACT

Data obtained on SARS-CoV-2 variant Omicron suggest that Omicron poses an increased risk of symptomatic breakthrough infections in people who receive only 2 doses of mRNA-1273. Administration of a booster mRNA vaccine may substantially reduce this risk.


Subject(s)
Breakthrough Pain
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.23.465542

ABSTRACT

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ~3-log10 compared to control animals. In nasal swabs, sgRNA declined 1-log10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.11.456015

ABSTRACT

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 {micro}g of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.{beta} (heterologous), which encompasses the spike sequence of the B.1.351 (beta or {beta}) variant. Reciprocal ID50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the {beta} variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost {beta}-specific reciprocal ID50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the {beta} variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. One-sentence summarymRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.


Subject(s)
Severe Acute Respiratory Syndrome
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.13.444010

ABSTRACT

SARS-CoV-2 mutations may diminish vaccine-induced protective immune responses, and the durability of such responses has not been previously reported. Here, we present a comprehensive assessment of the impact of variants B.1.1.7, B.1.351, P.1, B.1.429, and B.1.526 on binding, neutralizing, and ACE2-blocking antibodies elicited by the vaccine mRNA-1273 over seven months. Cross-reactive neutralizing responses were rare after a single dose of mRNA-1273. At the peak of response to the second dose, all subjects had robust responses to all variants. Binding and functional antibodies against variants persisted in most subjects, albeit at low levels, for 6 months after the primary series of mRNA-1273. Across all assays, B.1.351 had the greatest impact on antibody recognition, and B.1.1.7 the least. These data complement ongoing studies of clinical protection to inform the potential need for additional boost vaccinations.

13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.30.442182

ABSTRACT

LY-CoV1404 is a highly potent, neutralizing, SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody identified from a convalescent COVID-19 patient approximately 60 days after symptom onset. In pseudovirus studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.427/B.1.429, P.1, and B.1.526 and binds to these variants in the presence of their underlying RBD mutations (which include K417N, L452R, E484K, and N501Y). LY-CoV1404 also neutralizes authentic SARS-CoV-2 in two different assays against multiple isolates. The RBD positions comprising the LY-CoV1404 epitope are highly conserved, with the exception of N439 and N501; notably the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of variant binding, potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 is one in a panel of well-characterized, clinically developable antibodies that could be deployed rapidly to address current and emerging variants. New variant-resistant treatments such as LY-CoV1404 are desperately needed, given that some of the existing therapeutic antibodies are less effective or ineffective against certain variants and the impact of variants on vaccine efficacy is still poorly understood.


Subject(s)
COVID-19
14.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.27.441655

ABSTRACT

SARS-CoV in 2003, SARS-CoV-2 in 2019, and SARS-CoV-2 variants of concern (VOC) can cause deadly infections, underlining the importance of developing broadly effective countermeasures against Group 2B Sarbecoviruses, which could be key in the rapid prevention and mitigation of future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV, bat CoVs WIV-1 and RsSHC014, and SARS-CoV-2 variants D614G, B.1.1.7, B.1.429, B1.351 by a receptor-binding domain (RBD)-specific antibody DH1047. Prophylactic and therapeutic treatment with DH1047 demonstrated protection against SARS-CoV, WIV-1, RsSHC014, and SARS-CoV-2 B1.351infection in mice. Binding and structural analysis showed high affinity binding of DH1047 to an epitope that is highly conserved among Sarbecoviruses. We conclude that DH1047 is a broadly neutralizing and protective antibody that can prevent infection and mitigate outbreaks caused by SARS-like strains and SARS-CoV-2 variants. Our results argue that the RBD conserved epitope bound by DH1047 is a rational target for pan Group 2B coronavirus vaccines.


Subject(s)
Severe Acute Respiratory Syndrome , Infections
15.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.01.437942

ABSTRACT

The emergence of SARS-CoV-2 variants that threaten the efficacy of existing vaccines and therapeutic antibodies underscores the urgent need for new antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells of COVID-19 patients. The three most potent antibodies targeted distinct regions of the RBD, and all three neutralized the SARS-CoV-2 variants B.1.1.7 and B.1.351. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the ACE2 receptor, and has limited contact with key variant residues K417, E484 and N501. We designed bispecific antibodies by combining non-overlapping specificities and identified five ultrapotent bispecific antibodies that inhibit authentic SARS-CoV-2 infection at concentrations of <1 ng/mL. Through a novel mode of action three bispecific antibodies cross-linked adjacent spike proteins using dual NTD/RBD specificities. One bispecific antibody was >100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a 2.5 mg/kg dose. Notably, six of nine bispecific antibodies neutralized B.1.1.7, B.1.351 and the wild-type virus with comparable potency, despite partial or complete loss of activity of at least one parent monoclonal antibody against B.1.351. Furthermore, a bispecific antibody that neutralized B.1.351 protected against SARS-CoV-2 expressing the crucial E484K mutation in the hamster model. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
16.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.25.432969

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOC) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identify four receptor-binding domain targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 12 variants including the B.1.1.7 and B.1.351 VOCs. Two of them are ultrapotent, with sub-nanomolar neutralization titers (IC50 <0.0006 to 0.0102 g/mL; IC80 < 0.0006 to 0.0251 g/mL). We define the structural and functional determinants of binding for all four VOC-targeting antibodies, and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting potential means to mitigate resistance development. These results define the basis of therapeutic cocktails against VOCs and suggest that targeted boosting of existing immunity may increase vaccine breadth against VOCs.

17.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.25.428137

ABSTRACT

The Covid-19 pandemic has ravaged the globe, and its causative agent, SARS-CoV-2, continues to rage. Prospects of ending this pandemic rest on the development of effective interventions. Two monoclonal antibody (mAb) therapeutics have received emergency use authorization, and more are in the pipeline. Furthermore, multiple vaccine constructs have shown promise, including two with ~95% protective efficacy against Covid-19. However, these interventions were directed toward the initial SARS-CoV-2 that emerged in 2019. Considerable viral evolution has occurred since, including variants with a D614G mutation that have become dominant. Viruses with this mutation alone do not appear to be antigenically distinct, however. Recent emergence of new SARS-CoV-2 variants B.1.1.7 in the UK and B.1.351 in South Africa is of concern because of their purported ease of transmission and extensive mutations in the spike protein. We now report that B.1.1.7 is refractory to neutralization by most mAbs to the N-terminal domain (NTD) of spike and relatively resistant to a number of mAbs to the receptor-binding domain (RBD). It is modestly more resistant to convalescent plasma (~3 fold) and vaccinee sera (~2 fold). Findings on B.1.351 are more worrisome in that this variant is not only refractory to neutralization by most NTD mAbs but also by multiple potent mAbs to the receptor-binding motif on RBD, largely due to an E484K mutation. Moreover, B.1.351 is markedly more resistant to neutralization by convalescent plasma (~11-33 fold) and vaccinee sera (~6.5-8.6 fold). B.1.351 and emergent variants with similar spike mutations present new challenges for mAb therapy and threaten the protective efficacy of current vaccines.


Subject(s)
COVID-19
18.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.30.317818

ABSTRACT

SARS-CoV-2 infection causes an inflammatory cytokine storm and acute lung injury. Currently there are no effective antiviral and/or anti-inflammatory therapies. Here we demonstrate that 2019 SARS-CoV-2 spike protein subunit 1 (CoV2-S1) induces high levels of NF-{kappa}B activations, production of pro-inflammatory cytokines and mild epithelial damage, in human bronchial epithelial cells. CoV2-S1-induced NF-{kappa}B activation requires S1 interaction with human ACE2 receptor and early activation of endoplasmic reticulum (ER) stress, and associated unfolded protein response (UPR), and MAP kinase signalling pathways. We developed an antagonistic peptide that inhibits S1-ACE2 interaction and CoV2-S1-induced productions of pro-inflammatory cytokines. The existing FDA-approved ER stress inhibitor, 4-phenylburic acid (4-PBA), and MAP kinase inhibitors, trametinib and ulixertinib, ameliorated CoV2-S1-induced inflammation and epithelial damage. These novel data highlight the potentials of peptide-based antivirals for novel ACE2-utilising CoVs, while repurposing existing drugs may be used as treatments to dampen elevated inflammation and lung injury mediated by SARS-CoV-2.


Subject(s)
Lung Diseases , COVID-19 , Inflammation , Acute Lung Injury , Neoplasms, Glandular and Epithelial
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.30.318972

ABSTRACT

SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection.


Subject(s)
COVID-19
20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.30.320903

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China and expeditiously spread across the globe causing a global pandemic. While a select agent designation has not been made for SARS-CoV-2, closely related SARS-CoV-1 and MERS coronaviruses are classified as Risk Group 3 select agents, which restricts use of the live viruses to BSL-3 facilities. Such BSL-3 classification make SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the US; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form virus-like particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions.

SELECTION OF CITATIONS
SEARCH DETAIL